ORIFICES

Function

Orifices are used in hydraulic systems to restrict flow.

Sizing

To calculate the orifice diameter required to pass a desired flow at a specified pressure:
$\mathrm{D}=0.23 \times \sqrt{ }(\mathrm{Q} \div \sqrt{ } \Delta \mathrm{p})$
Where
D $\quad=\quad$ orifice diameter in inches
$\mathrm{Q} \quad=\quad$ flow in US gallons per minute
$\Delta \mathrm{p} \quad=\quad$ differential pressure across orifice
And assuming: specific gravity $=1$ and orifice coefficient $=0.63$
To calculate the flow through an orifice of a known diameter at a specified pressure:

$$
\mathrm{Q} \quad=\quad(\mathrm{D} \div 0.23)^{2} \times \sqrt{ } \Delta \mathrm{p}
$$

Where
Q $\quad=\quad$ flow in US gallons per minute
$\mathrm{D} \quad=\quad$ orifice diameter in inches
$\Delta \mathrm{p} \quad=\quad$ differential pressure across orifice
And assuming: specific gravity $=1$ and orifice coefficient $=0.63$
To calculate the pressure drop (differential pressure) across an orifice of a known diameter at a specified flow:
$\Delta \mathrm{p} \quad=\quad\left[\mathrm{Q} \div(\mathrm{D} \div 0.23)^{2}\right]^{2}$
Where
$\Delta \mathrm{p} \quad=\quad$ differential pressure across orifice
Q $\quad=\quad$ flow in US gallons per minute
$\mathrm{D}=\quad$ orifice diameter in inches
And assuming: specific gravity $=1$ and orifice coefficient $=0.63$

Conversions				
litre	\div	3.785	$=$	US gallon
millimetre	\div	25.4	$=$	inch
bar	\times	14.5	$=$	psi

Hydraulic Secrets Revealed! Click here to learn more...

